Overlay Data

<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Description</th>
<th>Data</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernalillo County Parcel Boundary</td>
<td>Bernalillo County parcel boundaries</td>
<td>2016 Bernalillo County Parcels</td>
<td>Bernalillo County</td>
</tr>
<tr>
<td>MRGCD Facilities</td>
<td>Facilities managed by the Middle Rio Grande Conservancy District</td>
<td>MRGCD Facilities, 2013</td>
<td>Middle Rio Grande Conservancy District</td>
</tr>
<tr>
<td>AMAFCA Drainage</td>
<td>Drainage facilities managed by the Albuquerque Metropolitan Arroyo Flood Control Authority</td>
<td>AMAFCA Linear Drainage, 2016</td>
<td>Albuquerque Metropolitan Arroyo Flood Control Authority</td>
</tr>
<tr>
<td>Trails</td>
<td>Existing trails in Bernalillo County</td>
<td>Bernalillo County Trails</td>
<td>Bernalillo County Public Works</td>
</tr>
<tr>
<td>County Commission Districts</td>
<td>Boundaries of Bernalillo County Commission Districts</td>
<td>Bernalillo County</td>
<td>Bernalillo County</td>
</tr>
<tr>
<td>Albuquerque City Council Districts</td>
<td>Boundaries of Albuquerque City Council Districts</td>
<td>City of Albuquerque</td>
<td>City of Albuquerque</td>
</tr>
<tr>
<td>NM House Districts</td>
<td>Boundaries of New Mexico State House Districts</td>
<td>New Mexico State House Districts</td>
<td>US Census</td>
</tr>
<tr>
<td>NM Senate Districts</td>
<td>Boundaries of New Mexico State Senate Districts</td>
<td>New Mexico State Senate Districts</td>
<td>US Census</td>
</tr>
<tr>
<td>PROS Plan Neighborhood Community Areas</td>
<td>Neighborhood Community Areas (NCAs) are geographical areas in Bernalillo County (County) that include several neighborhoods with common social and physical characteristics and a shared sense of community identity.</td>
<td>Bernalillo County PROS Plan Neighborhood Community Areas</td>
<td>Bernalillo County Parks and Recreation Department Parks, Recreation, and Open Space Facilities Master Plan 2015-2030</td>
</tr>
<tr>
<td>Municipalities</td>
<td>Municipal boundaries within Bernalillo County</td>
<td>Municipalities in Bernalillo County</td>
<td>Bernalillo County</td>
</tr>
<tr>
<td>Community Health Vulnerable Areas</td>
<td>A group of community health organizations collaborated on a series of community health assessments for the Albuquerque-Bernalillo-County area. Other maps show fresh food and healthcare "deserts" in parts of the South Valley and the Internat onal District. A "desert" is an area lacking in key community health resources. Other maps show a preponderance of negative community health indicators in Mountain View, the mid-North Valley, Downtown, Atrisco and the Internat onal District. County facilities could play a role in alleviating these situations by providing access to health resources in those areas. Community health maps such as those described above and other criteria were used by the Albuquerque Racial and Ethnic Approaches to Community Health (REACH) Team to identify vulnerable communities from a community health standpoint. See Figure 4.10: Bernalillo County Parks and Recreation Department Parks, Recreation, and Open Space Facilities Master Plan 2015-2030. The goal of the latter study is to identify and fund projects to increase opportunities for exercise and access to healthcare and fresh food in the South Valley (Atrisco-Westside NCA and Papajito-los Padillas NCA) and the Internat onal District (ID) (Central Urban NCA). The vulnerable community areas were also used to help determine relat ve priority of various proposed capital projects in the County PROS Plan.</td>
<td>Bernalillo County PROS Plan Community Health Vulnerable Areas</td>
<td>Bernalillo County Parks and Recreation Department Parks, Recreation, and Open Space Facilities Master Plan 2015-2030</td>
</tr>
</tbody>
</table>

Open Space Deficient Areas

Neighborhood Community Areas within Bernalillo County determined to be deficient in providing open space to their communities as designated as part of the Bernalillo County Parks and Recreation Department Parks, Recreation, and Open Space Facilities Master Plan 2015-2030.

Conserved Lands

Includes open space, parks and preserves from the following data sources: USGS Protected Areas Database, City of Albuquerque Open Space, City of Albuquerque Parks, Bernalillo County Parks and Open Space.

This layer combines all types and shows all conserved lands in green.

Land Ownership

Includes open space, parks and preserves from the following data sources: USGS Protected Areas Database, City of Albuquerque Open Space, City of Albuquerque Parks, Bernalillo County Parks and Open Space.

This layer is symbolized to show different ownerships.

Historic Land Grants

Locations of Historic Land Grants

Conserved Lands

Includes open space, parks and preserves from the following data sources: USGS Protected Areas Database, City of Albuquerque Open Space, City of Albuquerque Parks, Bernalillo County Parks and Open Space.

This layer combines all types and shows all conserved lands in green.

Land Ownership

Includes open space, parks and preserves from the following data sources: USGS Protected Areas Database, City of Albuquerque Open Space, City of Albuquerque Parks, Bernalillo County Parks and Open Space.

This layer is symbolized to show different ownerships.

Historic Land Grants

Locations of Historic Land Grants

Bernalillo County Zoning

County Zoning Boundaries

Conserved Lands

Includes open space, parks and preserves from the following data sources: USGS Protected Areas Database, City of Albuquerque Open Space, City of Albuquerque Parks, Bernalillo County Parks and Open Space.

This layer combines all types and shows all conserved lands in green.

Land Ownership

Includes open space, parks and preserves from the following data sources: USGS Protected Areas Database, City of Albuquerque Open Space, City of Albuquerque Parks, Bernalillo County Parks and Open Space.

This layer is symbolized to show different ownerships.

Historic Land Grants

Locations of Historic Land Grants

TPL’s ParkServe Park Gap Analysis

The ParkServe park gap analysis shows populated areas within Bernalillo County that fall outside of a 10-minute walk service area of a park or greenspace. These areas are assigned a level of park need, based on a weighted calculation of three demographic variables from the 2015 Forecast Census Block Groups demographic data provided by C2S:

- Population density – weighted at 50%
- Density of children age 19 and younger – weighted at 25%
- Density of households with income less than 75% of the regional median household income – weighted at 25%

Areas designated as Moderate, High or Very High need fall outside a ten minute walk of a park, open space or trail, and have higher percentages of people, kids and low income households.

Urban Heat Islands

This Urban Heat Island model was created using standard methodology updated by The Trust for Public Land which identifies urban heat islands as the areas within an urban area where the average summer (June - August) land surface temperatures are greater than the average surface temperature for the study area by 1.5 degrees Fahrenheit (McPherson et al. 2013). Areas with surface temperatures above this threshold are broken into three classes (using Natural Breaks) and assigned priorities of Moderate, High or Very High. For the Albuquerque Urban Area, the temperature breaks were as follows (in Fahrenheit):

- Mean Study Area Land Surface Temperature: 94.2
- Moderate Urban Heat Island: 95.5 - 97.4
- High Urban Heat Island: 97.5 - 99.4
- Very High Urban Heat Islands: 99.5 - 103.6

This approach was modified to account for results created due to Albuquerque’s unique desert landscape, where areas of town with no development are removed. While these natural land surfaces are indeed hotter than other parts of town, the purpose of this Urban Heat Island layer is to guide activities designed to reduce the heat effects on the population. In order to focus on Urban Heat Islands in populated areas, USGS impervious cover data were added and used to weight the Urban Heat Island results with hotter areas with greater impervious surface being prioritized the highest. The final results are assigned a priority value of Moderate, High or Very High, with all 3 classes representing areas to consider activities to mitigate Urban Heat Island effects through reduction of impervious surface or modifications to existing infrastructure to minimize heat gain.

Urban Heat Islands

This Urban Heat Island model was created using standard methodology updated by The Trust for Public Land which identifies urban heat islands as the areas within an urban area where the average summer (June - August) land surface temperatures are greater than the average surface temperature for the study area by 1.5 degrees Fahrenheit (McPherson et al. 2013). Areas with surface temperatures above this threshold are broken into three classes (using Natural Breaks) and assigned priorities of Moderate, High or Very High. For the Albuquerque Urban Area, the temperature breaks were as follows (in Fahrenheit):

- Mean Study Area Land Surface Temperature: 94.2
- Moderate Urban Heat Island: 95.5 - 97.4
- High Urban Heat Island: 97.5 - 99.4
- Very High Urban Heat Islands: 99.5 - 103.6

This approach was modified to account for results created due to Albuquerque’s unique desert landscape, where areas of town with no development are removed. While these natural land surfaces are indeed hotter than other parts of town, the purpose of this Urban Heat Island layer is to guide activities designed to reduce the heat effects on the population. In order to focus on Urban Heat Islands in populated areas, USGS impervious cover data were added and used to weight the Urban Heat Island results with hotter areas with greater impervious surface being prioritized the highest. The final results are assigned a priority value of Moderate, High or Very High, with all 3 classes representing areas to consider activities to mitigate Urban Heat Island effects through reduction of impervious surface or modifications to existing infrastructure to minimize heat gain.

Bosque Ecosystem Monitoring Program (BEMP) Depth to Groundwater

At each site five wells are monitored monthly for depth to groundwater. The annual average depth to groundwater is the average of the monthly sampled wells for the calendar year. If more than two wells at a site were not sampled in a given month, the average for that month is not included in the annual average. If three or more months were missing during a calendar year, the annual average depth to groundwater is not calculated for that calendar year.

Annual average discharge for the Rio Grande is calculated from the U.S. Geological Survey (USGS) reported daily average discharge for the USGS gage ID 08330000. Only the daily averages from the days that depth to groundwater was sampled are used to calculate that annual average discharge for a site. If three or more daily averages are missing during the calendar year for a site, the annual average discharge is not calculated for that calendar year.

For more details on site setup and collection protocols please see http://bemp.org/research-guides-protocols/

Bosque Ecosystem Monitoring Program (BEMP) Canopy Cover

Each BEMP site has ten 30-m transects that are surveyed annually for vegetation cover. For a vegetation survey, each species found along the transect is recorded. The maximum possible cover for one individual species in a site is 300 m. The 2015 cottonwood cover is the summed length of the ten transects covered by cottonwood over the maximum coverage. The 2015 exotic tree species cover (primarily saltcedar, Russian olive, and Siberian elm) is the summed length of the ten transects covered by exotic species over 300 m.

For more details on site setup and collection protocols please see http://bemp.org/research-guides-protocols/

Analysis Results

<table>
<thead>
<tr>
<th>Resource Goal Name</th>
<th>Goal Weights</th>
<th>Criteria</th>
<th>Criteria Weights</th>
<th>Methodology</th>
<th>Data (Description, Date, Resolution)</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Conservation Priority (Weighting based on community poll)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protect Water Quality in Rivers and Streams Priority Goal Results</td>
<td>Protect Water Quality in Rivers and Streams Priority Goal Results</td>
<td>Protect Wildlife Habitat Priority Goal Results</td>
<td>Protect Local Agriculture and Food Production Priority Goal Results</td>
<td>Protect Important Cultural and Historical Sites Priority Goal Results</td>
<td>Protect Public Access to Healthy Outdoor Recreation Priority Goal Results</td>
<td>The Trust for Public Land</td>
</tr>
</tbody>
</table>
Protect Water Quality in Rivers and Streams

| 30% | N/A | N/A | N/A | 1. Used a weighted max calculation to combine the results of the criteria listed below for this resource goal. The priority classifications found in this layer can be expected to provide a benefit in at least one of the 3 criteria associated with this resource goal. Areas that score as Moderate (3), High (4) or Very High (5) are considered actionable areas that will benefit this resource. The weights applied to each criteria to create this result were determined by the Bernalillo County Greenprint technical team based on a number of factors including relative importance of that particular criteria, quality of the input data and accuracy of the results. Weights were applied as follows: Protect natural lands along water features (30%) Protect permeable soils on non-impervious surfaces (20%) Protect natural lands in aquifer recharge zones (40%) | 1. Protect natural lands along water features Priority Criteria Results 2. Protect permeable soils on non-impervious surfaces Priority Criteria Results 3. Protect Lands in aquifer recharge zone Priority Criteria Results 4. The Trust for Public Land 5. USGS NHD 6. MRGCD 7. Bernalillo County Public Works 8. Internal, from ABQ Greenprint 9. MRLC NLCD Land Cover Data |}

Protect natural lands along rivers, streams and arroyos, drains and acequias

Protect permeable soils on non-impervious surfaces

| 20% | N/A | N/A | N/A | 1. Join the soil data with a pre-fab table of soil permeability averages for each map unit, 1 &= represents amount of water that would move vertically through a unit area of saturated soil
2. Select all values > -9999 to remove records with no data 3. Reclassify NLCD impervious surface based on % of impervious surface per pixel. Natural lands with 5 classes, with 100 representing value of NoData so it would be excluded from analysis 4. Added soil and impervious rasters together; higher values mean more impermeable and less permeable 5. Reclassify on 0-5 scale. | 1. USGS NHD 2. USGS MRLC NLCD |}

Protect Lands in aquifer recharge zones

| 40% | N/A | N/A | N/A | 1. Spherical, intermittent & perennial rivers found within Sandia and Manzano mountains. These were buffered 100 ft, converted to raster and given a value of 4 2. Forested areas within the Sandia and Manzano mountains were reclassified and given a value of 3 3. Wetlands/woody wetlands within the Sandia and Manzano mountains were reclassified and given a value of 4 4. Rio Grande, Rio Puerco, Tijeras Arroyo, San Pedro Creek, Calabacillas Arroyo, and Bear Canyon recharge all buffered 100 ft; converted to raster and given a value of 5 5. Irrigated fields (see UFOID for how these were determined) converted to raster and given a value of 5 6. Irrigation canals (except type abandoned) were buffered 100ft; converted to raster and given a value of 4 7. All of the above datasets combined with cell statistics maximum | 1. NHD Flowlines, 2016 2. NLCD, 2011 3. Rivers, 2005 4. USGS Area- and Depth-Weighted Averages of Selected SSURGO Variables Layer table, 2014 5. NLCD Impervious surface, 2011 6. NLCD, 2011 7. The Trust for Public Land 8. USGS NHD 9. MRLC NLCD |}

Preserve Local Agriculture and Food Production

| 18% | N/A | N/A | N/A | 1. Used a weighted max calculation to combine the results of the criteria listed below for this resource goal. The priority classifications found in this layer can be expected to provide a benefit in at least one of the 4 criteria associated with this resource goal. Areas that score as Moderate (3), High (4) or Very High (5) are considered actionable areas that will benefit this resource. The weights applied to each criteria to create this result were determined by the Bernalillo County Greenprint technical team based on a number of factors including relative importance of that particular criteria, quality of the input data and accuracy of the results. Weights were applied as follows: Preserve irrigated cropland (40%) Preserve vacant lots in urban food deserts for community gardens (30%) New opportunities for agriculture (10%) Grassland on ranchlands (10%) | 1. Preserve irrigated cropland Priority Criteria Results 2. Preserve vacant lots in urban food deserts for community gardens Priority Criteria Results 3. New opportunities for agriculture Priority Criteria Results 4. Grassland on ranchlands Priority Criteria Results 5. The Trust for Public Land 6. USGS NHD 7. USGS NLCD 8. Internal, from ABQ Greenprint 9. MRLC NLCD 10. Bernalillo County Public Works 11. The Trust for Public Land 12. Bernalillo County Cultural Mapping 13. USGS NHD 14. Digitized from aerial imagery |
Protect Wildlife Habitat

Preserve irrigable agricultural land
40%
1. Buffer acequia/ditches, channel, feeder, GWF, main canals for 0.25 mi
2. Select any type of agriculture from land-use layer
3. Select parcels known to be cg from Bernalillo Cultural Report
4. Select cropland that is within 0.25 mi of an acequia/ditch
5. Reclassify all areas that meet this criteria to 5, all else 0

Preserve vacant lots in urban food deserts for community gardens
25%
1. Merged USDA food access table to Bernalillo County Census Tracts
2. Selected urban tracts that were low-income with limited access to food
3. Selected vacant Bernalillo County parcels that were within the low income/low access to food urban tracts
4. Removed parcels on state trust land, or those that were within 0.3 mi from highway
5. Reclassify all tracts that meet this criteria to 5, all else 0

New opportunities for agriculture
30%
1. Sols joined with mappable soil table, with high capacity class when irrigated were selected (no prime farmlands in county), converted to raster and given value of 5
2. ditch types appropriate for ag were selected and given a buffer of 0.25 miles, converted to raster and given a value of 5
3. vacant parcels were selected, converted to raster, given value of 5
4. Datasets added together and reclassified to 5 if (criteria are met); if two criteria are met; 2 of 3 criteria is met plus vacant, 1 if one criteria is met
5. Lands classified as Agriculture in the land use dataset were removed
6. Selected historical ag areas from 1935 land use. If ag, still is ag = 0; if ag, now vacant or parks = 1; if was ag, now developed = 3
7. NLCD reclassified to find areas NOT appropriate for ag (water, developed, current ag, or parks = 5; if was ag, now developed = 3
8. areas classified as Agriculture in the land use dataset were removed

Preserve grasslands on ranch land
5%
1. Selected ranch lands as parcels with ag value >0 and >25 acres
2. Extracted grasslands from landfire existing vegetation type database. Wetland grasslands = 5; all other grasslands = 4.
3. Combined datasets to find grasslands on ranchland

Weights were applied as follows:

1. Used a weighted max calculation to combine the results of the criteria listed below for this resource goal. The priority classifications found in this layer can be expected to provide a benefit in at least one of the 5 criteria associated with this resource goal. Areas that score as a Moderate (3), High (4) or Very High (5) are considered actionable areas that will benefit this resource goal. The priority classifications found in this layer can be expected to provide a benefit in at least one of the 5 criteria associated with this resource goal. Areas that score as a Moderate (3), High (4) or Very High (5) are considered actionable areas that will benefit this resource goal. Areas that score as a
2. Protect Wildfire Movement Corridors Priority Criteria Results
3. Preserve Wetlands Priority Criteria Results
4. Priority Wildlife and Bird Habitat Priority Criteria Results
5. Known Locations of Threatened/Endangered Species Priority Criteria Results
6. Found in the layer that can be expected to provide a benefit in at least one of the 5 criteria associated with this resource goal. Areas that score as a Moderate (3), High (4) or Very High (5) are considered actionable areas that will benefit this resource goal. Areas that score as a

Priority Criteria Results

Preserve urban tree canopy
10%
1. Use census tract information to determine which tracts are urban (<2500 people)
2. Select tree canopy from landfire existing vegetation type, given value = 5
3. Raster calculator to find tree canopy in urban tracts
4. Removed forest service land since although in urban tracts, the area is not urban
5. Removed areas such as airport, military base, other areas known to be non-urban

Preserve wildlife movement corridors
30%
1. Cougar corridors from Miekle study given value of 5
2. Rivers buffered by 300 feet, given value of 5
3. Amarillo drainage buffered by category of natural arroyos = 100%; hard side channels = 300 ft; soft side channel = 300 ft
4. Reclassify drainage or natural = 5, soft channel = 4, hard channel = 3
5. Combine all data with cell stats max

Preserve wetlands
10%
1. Select wetland/wetland areas from CHWAT Assessment, given value = 5
2. NWI wetlands given value of 5
3. Datasets combined with cell stats max

Known Locations of Threatened/Endangered Species

- 1. Selected Ranch lands as parcels with ag value >0 and >25 acres
- 2. Extracted grasslands from landfire existing vegetation type database. Wetland grasslands = 5; all other grasslands = 4.
- 3. Combined datasets to find grasslands on ranchland

New opportunities for Agriculture

- 1. Sols joined with mappable soil table, with high capacity class when irrigated were selected (no prime farmlands in county), converted to raster and given value of 5
- 2. ditch types appropriate for ag were selected and given a buffer of 0.25 miles, converted to raster and given a value of 5
- 3. vacant parcels were selected, converted to raster, given value of 5
- 4. Datasets added together and reclassified to 5 if (criteria are met); if two criteria are met; 2 of 3 criteria is met plus vacant, 1 if one criteria is met
- 5. Lands classified as Agriculture in the land use dataset were removed
- 6. Selected historical ag areas from 1935 land use. If ag, still is ag = 0; if ag, now vacant or parks = 1; if was ag, now developed = 3
- 7. NLCD reclassified to find areas NOT appropriate for ag (water, developed, current ag, or parks = 5; if was ag, now developed = 3
- 8. areas classified as Agriculture in the land use dataset were removed

Grasslands on Ranchland

- 5%
- 1. Selected ranch lands as parcels with ag value >0 and >25 acres
- 2. Extracted grasslands from landfire existing vegetation type database. Wetland grasslands = 5; all other grasslands = 4.
- 3. Combined datasets to find grasslands on ranchland

Weights were applied as follows:

- 1. Used a weighted max calculation to combine the results of the criteria listed below for this resource goal. The priority classifications found in this layer can be expected to provide a benefit in at least one of the 5 criteria associated with this resource goal. Areas that score as a Moderate (3), High (4) or Very High (5) are considered actionable areas that will benefit this resource goal. Areas that score as a
- 2. Protect Wildfire Movement Corridors Priority Criteria Results
- 3. Preserve Wetlands Priority Criteria Results
- 4. Priority Wildlife and Bird Habitat Priority Criteria Results
- 5. Known Locations of Threatened/Endangered Species Priority Criteria Results

Priority Criteria Results

Preserve Urban Tree Canopy

- 10%
- 1. Use census tract information to determine which tracts are urban (<2500 people)
- 2. Select tree canopy from landfire existing vegetation type, given value = 5
- 3. Raster calculator to find tree canopy in urban tracts
- 4. Removed forest service land since although in urban tracts, the area is not urban
- 5. Removed areas such as airport, military base, other areas known to be non-urban

Preserve Wildlife Movement Corridors

- 30%
- 1. Cougar corridors from Miekle study given value of 5
- 2. Rivers buffered by 300 feet, given value of 5
- 3. Amarillo drainage buffered by category of natural arroyos = 100%; hard side channels = 300 ft; soft side channel = 300 ft
- 4. Reclassify drainage or natural = 5, soft channel = 4, hard channel = 3
- 5. Combine all data with cell stats max
Priority wildlife and bird habitats

<table>
<thead>
<tr>
<th>Closest observation in data is 2011</th>
<th>Final CHAT scores reclassified on scale 0-5 so 1 (best score) = 5 and 6 (worse score) = 0.</th>
<th>1. T& E data for Bernalillo County, private land only, masked to 1 mile blocks was converted to raster and given value of 5.</th>
<th>3. USFS Critical habitat given value of 5</th>
<th>4. GAP distribution data, 2015-16</th>
<th>5. Megan Friggens data USFS for SW Willow Flycatcher and Yellow Billed Cuckoo given value of 5 (key species)</th>
<th>6. All combined with cell statistics sum</th>
<th>7. Results sliced into 0-5 based on natural breaks</th>
</tr>
</thead>
</table>

Protect areas with known locations of threatened/endangered species

<table>
<thead>
<tr>
<th>Observed in data is 2011</th>
<th>Threatened/Endangered species data, 2016.</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Protect Important Cultural and Historical Sites

| The priority classifications found in this layer can be expected to provide a benefit to at least one of the 7 criteria associated with this resource goal. | Areas that score as a Moderate (3), High (4) or Very High (5) are considered actionable areas that will benefit this resource. | 1. Used a weighted max calculation to combine the results of the criteria listed below for this resource goal. The priority classifications found in this layer can be expected to provide a benefit to at least one of the 7 criteria associated with this resource goal. Areas that score as a Moderate (3), High (4) or Very High (5) are considered actionable areas that will benefit this resource. | The weights applied to each criteria to create this result were determined by the Bernalillo County Greenprint technical team based on a number of factors including relative importance of that particular criteria, quality of the input data and accuracy of the results. | Weights were applied as follows: Preserve lands along historic corridors (10%) Preserve identified cultural landscapes (25%) Preserve acequias and adjacent land (25%) Preserve lands with traditional views (15%) Preserve historical agricultural landscapes (10%) Preserve tribal and land grant lands (5%) Preserve landscapes that support creative asset clusters (10%) | 1. Riparian habitat selected from USFS ecological response units | 2. Final CHAT score reclassified on scale 0-5 so 1 (best score) = 5 and 6 (worse score) = 0. | 3. All criteria combined | 3. Data combined with cell stats max, reclassified to have value of 5 |
|---------------------------------|--|-------------------|-----------------|-----------------|----------------|----------------|----------------|

Preserve lands along historic corridors

<table>
<thead>
<tr>
<th>El Camino Real Trail</th>
<th>Historic Route 66 buffered 292 feet</th>
<th>3. All criteria combined</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve identified cultural landscapes

<table>
<thead>
<tr>
<th>Middle Rio Grande Conservancy District</th>
<th>Historic Route 66 buffered 292 feet</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve acequias and adjacent land

<table>
<thead>
<tr>
<th>Historic Route 66 buffered 292 feet</th>
<th>3. Sandia GPS Ditches buffered 50’ and given value of 5</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve landmarks with traditional views

<table>
<thead>
<tr>
<th>El Camino Real Trail</th>
<th>Historic Route 66 trail</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve important cultural and historical sites

<table>
<thead>
<tr>
<th>1. Select MRGCD main canals and ditches, buffer 100' and give value of 5</th>
<th>2. Select MRGCD other facilities, buffer 50' and give value of 5</th>
<th>3. Sandia GPS Ditches buffered 50’ and given value of 5</th>
</tr>
</thead>
</table>

Preserve landscapes that support creative asset clusters

<table>
<thead>
<tr>
<th>Historic Route 66 trail</th>
<th>3. All criteria combined</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve tribal and land grant lands

<table>
<thead>
<tr>
<th>Mystic Trail (1km spaced points); Volcanoes (highest points); Sandia Crest (highest points)</th>
<th>3. All criteria combined</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve lands with traditional views

<table>
<thead>
<tr>
<th>Historic Route 66 trail</th>
<th>3. Historic Route 66 buffered 292 feet</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve historical agricultural landscapes

<table>
<thead>
<tr>
<th>Historic Route 66 trail</th>
<th>3. South Valley historic agriculture buffers 0.25 mi, given value of 5</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve lands along historic corridors

<table>
<thead>
<tr>
<th>Historic Route 66 trail</th>
<th>3. All criteria combined</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve identified cultural landscapes

<table>
<thead>
<tr>
<th>Historic Route 66 trail</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve lands with traditional views

<table>
<thead>
<tr>
<th>Historic Route 66 trail</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve historical agricultural landscapes

<table>
<thead>
<tr>
<th>Historic Route 66 trail</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve tribal and land grant lands

<table>
<thead>
<tr>
<th>Historic Route 66 trail</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>

Preserve landscapes that support creative asset clusters

<table>
<thead>
<tr>
<th>Historic Route 66 trail</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
<th>3. Data combined with cell stats max, reclassified to have value of 5</th>
</tr>
</thead>
</table>
| Preserve historical agricultural landscapes | 15% | 1. Determine the change in arable land from 1935 to current.
2. If was ag, is now vacant, given value of 1
3. If was ag, is now single family, given value of 1
4. Select all parcels with ag value >0
5. All data combined with cell stats max | 2015 Land use, 2000
(b) Land Use, 2011
(c) Bernalillo County Parcels, 2015 | (a) Bureau of Reclamation
(b) City of Albuquerque
(c) Bernalillo County |
| Preserve tribal and land grant lands | 5% | 1. Land grants reclassified and given value of 5 | Land grants, 2006
(a) Bureau of Land Management
(b) City of Albuquerque
(c) Bernalillo County |
| Preserve landscapes that support creative asset clusters | 10% | 1. Because the vector clusters were overlapping, some data manipulation cleared the data so values would no longer overlap
2. Cluster value of 2 (Distant of hot spots), given value of 2
3. Cluster value of 4 (given value of 3)
4. Cluster value of 6 given value of 4; cluster value of 8 (center of hot spot) given value of 5. | Creative Asset Clusters, 2013
(a) Bernalillo County; from Cultural Mapping Report |

Provide Public Access to Healthy Outdoor Recreation

<table>
<thead>
<tr>
<th>15%</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
</table>

| Preserve open space lands in or near low income urban neighborhoods | 35% | 1. TPL ParkScore Analysis run on all urban area in study area
2. Income weighted higher than kid density or pop density, so areas in low income would weighted more heavily in result. | Includes several internal datasets, including parks, road network, US Census Data
(a) TPL data |

| Preserve land that could connect gaps in existing trail network | 20% | 1. Based on conversations with Richard Bowles, Bernalillo Public Works, pulled out trails that are high priority to build
2. Pulled out gaps in 50 mi proposed loop
3. Pulled out high priority critical links from CABQ trails report
4. Pulled out tails part of MRCDG long range transportation plan 2040
5. Digitized connection between PETR and Rio Puerco (info provided by Attila Bality, NPS)
6. Buffered these all 250’ and given value of 5
7. Pulled out remainder of proposed trails, buffered 250 feet and gave value of 3.
8. Data combined with cell stats max | Bernalillo County Trails Existing and Proposed
(a) Bernalillo County Public Works
(b) digitized from information given by Attila Bality, NPS |

| Provide opportunities for bird and wildlife watching | 10% | 1. Download and processed data observations from e-Bird 2010 - 2016
2. Convert XY data to points on map
3. Found sum of observations at each observation point
4. Run point density with 1/8 mi neighborhood circle
5. Reclassify, remove 0 from classification so the data is not heavily skewed towards 0
6. Scale 0-5 with 5 being areas with most bird observations | E-Bird data, 2016
(a) Audubon
(b) Cornell Lab of Ornithology |
Provide open space to improve public health

1. TPL ParkScore Analysis run for whole study area
2. Population density heavily weighted during PS analysis (based on conversation with Tom Scharmen); income and kid density were not factored in.
3. Public health datasets were reclassified 1-5 using natural breaks so the lowest health outcomes = 5 and best = 1. Datasets are: APS elementary school obesity; no leisure time activity > 18 yrs old; children 10-17yrs obese; adult chronic disease deaths
4. Added together the reclassified results of these datasets such that a higher number means worse health outcomes.
5. Data reclassified to scale of 0-5 where 5 = worst health outcomes
6. Data reclassified to scale of 0-5 where 5 = worst health outcomes
7. Final result sliced on scale 1-5

For park score: several internal datasets, including parks, road network, US Census Data
- APS elementary school healthy weight assessment, 2013
- Behavior Risk Factors, 2014
- Child Obesity risk, 2010
- Premature death from chronic disease, 2011

For TPL data:
- from NM Community Data Collaborative (original is APS)
- from NM Community Data Collaborative (original is CDC)
- from NM Community Data Collaborative (original is CDC)
- from NM Community Data Collaborative (original is CDC)